Microcirculation of the Bulbar Conjunctiva in the Goat Implanted with a Total Artificial Heart: Effects of Pulsatile and Nonpulsatile Flow

    loading  Checking for direct PDF access through Ovid

Abstract

A new system to observe the microcirculation on the bulbar conjunctiva was developed using a digital high definition microscope to investigate the influence of the flow patterns on the microcirculation in a goat with a total artificial heart (TAH). The undulation pump TAH was implanted into the goat. When the whole body condition became stable, the flow pattern was modulated between the pulsatile and the nonpulsatile mode, and the changes in the microcirculation were observed. When the flow pattern was changed from pulsatile to nonpulsatile mode, the erythrocyte velocity in capillaries dropped from 526 ± 83 to 132 ± 41 μm/s and remained at a low level. The number of perfused capillaries decreased as well. Then the nonpulsatile flow mode was maintained for 20 minutes. After the flow pattern was returned to the pulsatile mode again, the erythrocyte velocity recovered to the initial level (433 ± 71 μm/s). In many cases, the flow of the nonperfused capillaries in the nonpulsatile mode recovered to the initial level after the flow pattern was changed to the pulsatile mode again. The perfused capillary density in the nonpulsatile mode (19.7 ± 4.1 number of capillaries/mm ) was significantly lower than that in the pulsatile mode (34.7 ± 6.3 number of capillaries/mm ).

It is thought that the basal and flow stimulated endothelium derived nitric oxide release in the microvessels decreased because of the disappearance of pulsatility and that the nitric oxide induced the constriction of arterioles after the flow pattern was changed to the nonpulsatile mode. At the same time, the baroceptors might sense the decrease in the arterial peak pressure or dp/dt, and the sympathetic nerve increases activities and induce the constriction of arterioles. Then, the erythrocyte velocity in capillaries would decrease. Because of the flow pattern further in the chronic phase, it is important to follow the change in the microcirculation.

Related Topics

    loading  Loading Related Articles