The Assembly of the Prothrombinase Complex on Adherent Platelets

    loading  Checking for direct PDF access through Ovid

Abstract

Prothrombinase complex assembly, in real time, on platelets adherent to immobilized von Willebrand Factor (vWf) was examined by total internal reflection fluorescence spectroscopy (TIRFS). Electron microscopy showed that the platelets adhered to vWf in a largely unactivated state and could be activated by thrombin. Antibody binding to glycoprotein (GP) Ib and functional GPIIb-IIIa receptor molecules on adherent platelet membranes monitored by TIRFS also indicated that platelets adhered in a largely unactivated state. Maximal expression of the receptor form of GPIIb-IIIa detected by antibody binding was seen only after thrombin stimulation of the adherent platelets. Antibody binding to GPIb was detected on adherent platelets. A reduction in antibody binding was observed after thrombin stimulation of the platelets, indicating a change in GPIb as a consequence of thrombin stimulation of the platelets. The binding of the protein components of the prothrombinase complex to adherent and thrombin-stimulated adherent platelets was then studied individually. Factor Va bound to adherent and thrombin-stimulated adherent platelets with an estimated Ka of 58 nmoI/L. Minimal factor Xa binding was observed on adherent platelets before thrombin stimulation. Factor Xa binding was, however, readily observed on thrombin-stimulated adherent platelets. This factor Xa binding was not saturable, and no Kd value could be estimated. Direct measurement of prothrombinase complex assembly was demonstrated by using an energy transfer phenomenon between fluorescein-labeled factor Va and rhodamine-labeled factor Xa. Prothrombinase complex assembly was observed on both adherent and thrombin-stimulated adherent platelets. The estimated KA for the factor Va/factor Xa interaction was 4 nmol/L. TIRFS demonstrated that adherent platelets have the ability to support prothrombinase complex assembly, as shown by a direct energy transfer reaction between fluorescently labeled factors Va and Xa.

Related Topics

    loading  Loading Related Articles