Organization of von Willebrand Factor on Surface-Activated Platelets

    loading  Checking for direct PDF access through Ovid

Abstract

The distribution and organization of von Willebrand factor (vWF) multimers on platelets after surface activation have not been fully characterized. In the present study, washed human platelets were allowed to interact with Formvar-coated, electron microscope grids for 20 minutes at 37°C and then fixed. After fixation, cells were washed and then incubated with buffer alone, human plasma, human plasma preincubated with ristocetin (1.2 mg/niL), purified human vWF plus ristocetin, or bovine plasma. Macromolecular complexes were revealed by ultrastructural immunocytochemistry employing a polyclonal antibody against vWF and protein A-gold (PAG) as the electron-dense probe. vWF multimers were not present on discoid platelets but appeared on the central zone of dendritic cells and over larger central areas of fully spread platelets. Exposure to human plasma alone did not affect the distribution of electron-dense probes for vWF in central regions of surface-activated cells. Incubation of spread platelets with ristocetin-activated human plasma or bovine plasma resulted in the appearance of randomly dispersed, mottled areas of increased density covering the surface from edge to edge. Exposure to vWF antibody and PAG resulted in specific labeling of the dense areas in a serpentine, linear array. The gold-probe distribution suggested that the vWF multimers were not superimposed and were distributed in a random, irregular manner from edge to edge with label-free, clear areas between them. The results extend previous observations demonstrating that glycoprotein Ib-IX receptors are not spontaneously cleared from the plasma membranes of surface-activated platelets by showing that the receptor function of glycoprotein Ib-IX complex remains unchanged.

Related Topics

    loading  Loading Related Articles