Resveratrol is Efficiently Glucuronidated by UDP-Glucuronosyltransferases in the Human Gastrointestinal Tract and in Caco-2 Cells

    loading  Checking for direct PDF access through Ovid


Resveratrol (3, 5, 4′-trihydroxy-trans-stilbene), a natural polyphenol present in grapes and peanuts, has been reported to exert a variety of potentially therapeutic effects. The aim of this study was to determine the contribution of the gastrointestinal (GI) tract to the glucuronidation of this compound and its cis-isomer, which also occurs naturally. For this purpose, glucuronidation of the two resveratrol isomers was investigated in human microsomes prepared from: stomach, duodenum, four segments of the remaining small intestine (S-1 to S-4) and colon, and from the human intestinal cell lines Caco-2 and PD-7. cis- and trans-Resveratrol were efficiently glucuronidated in the GI tract with the formation of both 3-O- and 4′-O-glucuronides, however, the two stereoisomers were glucuronidated at different rates depending on the donor and the segment considered. Microsomes prepared from Caco-2 and PD-7 cells also efficiently glucuronidated cis-resveratrol and, to a lesser extent, the trans-isomer, however, only the 3-O-glucuronide was formed. Among the UDP-glucuronosyltransferases (UGT) that are known to be expressed in the GI tract, the isoforms UGT1A1, 1A6, 1A8, 1A9 and 1A10 were active in glucuronidating trans- and/or cis-resveratrol. The results demonstrate that the GI tract may contribute significantly to the first pass metabolism of these naturally occurring polyphenols. Copyright © 2006 John Wiley & Sons, Ltd.

Related Topics

    loading  Loading Related Articles