Pharmacokinetic interactions in mice between irinotecan and MBL-II-141, an ABCG2 inhibitor

    loading  Checking for direct PDF access through Ovid


Purpose. The chromone derivative MBL-II-141, specifically designed to inhibit ABCG2, was previously demonstrated to combine strong inhibition potency, low toxicity and good efficiency in reversing resistance to irinotecan in a xenografted mouse model. Here, the pharmacokinetic interactions in mice between irinotecan, its active metabolite SN-38 and MBL-II-141 were characterized quantitatively in the blood and in the brain. Methods. Compartmental models were used to fit the data. Goodness-of-fit was assessed by simulation-based diagnostic tools. Results. Irinotecan increased the MBL-II-141 apparent clearance and Vss 1.5-fold, probably by increasing the MBL-II-141 unbound fraction. MBL-II-141 decreased the total apparent clearance of irinotecan by 23%, by decreasing its biliary clearance. MBL-II-141 increased 3-fold the brain accumulation of irinotecan, as a result of the rise of systemic exposure combined with the inhibition of ABCG2-mediated efflux at the blood–brain barrier. Finally, SN-38 exposure was increased by 1.16-fold under treatment with MBL-II-141, owing to the higher irinotecan exposure with increased metabolism towards the formation of SN-38. Conclusions. These results may help to anticipate the pharmacokinetic interactions between MBL-II-141 and other ABCG2 substrates. The irinotecan-MBL-II-141 interaction is also expected to occur in humans. Copyright © 2017 John Wiley & Sons, Ltd.

Related Topics

    loading  Loading Related Articles