Breast Cancer Research and Treatment. 79(2):241–252, MAY 2003
PMID: 12825859
Issn Print: 0167-6806
Publication Date: 2003/05/01
Prolactin overexpression by MDA-MB-435 human breast cancer cells accelerates tumor growth
Karen Liby;Bonnie Neltner;Lisa Mohamet;Lindsey Menchen;Nira Ben-Jonathan;
+ Author Information
Department of Cell Biology, University of Cincinnati Medical School, Cincinnati, OH, USA
Abstract
Prolactin (PRL) is an important hormone in mammary tumorigenesis in rodents but its involvement in human breast cancer has been controversial. A role for locally produced PRL in breast carcinogenesis is suggested by its mitogenic action on breast cancer cells and the expression of both PRL and its receptor (PRL-R) in breast carcinomas. Our objective was to examine whether PRL, overexpressed by breast cancer cells, forms an autocrine/paracrine loop that confers a growth advantage for tumors. MDA-MB-435 breast cancer cells overexpressing 23K human PRL were generated, and PRL production and secretion by the clones were confirmed by RT-PCR, western blotting, and the Nb2 bioassay; control clones contain vector only. In vitro the 23K PRL clones proliferated faster and expressed higher levels of the PRL-R protein than controls only when incubated in charcoal-stripped serum (CSS) devoid of lactogenic hormones. When injected into the mammary fatpad of female nude mice or subcutaneously into males, the PRL-overexpressing clones formed tumors that grew 2-4-fold faster than tumors derived from control clones or wild type MDA-MB-435 cells. Western analysis demonstrated significantly higher PRL, PRL-R, and bcl-2 levels in the tumors overexpressing PRL compared to control tumors. These data support a role for breast PRL as a growth/anti-apoptotic factor and suggest that it may serve as a novel therapeutic target for the treatment of breast cancer.