A dose- and time-controllable syngeneic animal model of breast cancer microcalcification


    loading  Checking for direct PDF access through Ovid

Abstract

The development of novel diagnostic agents for the detection of breast cancer microcalcifications requires a reliable animal model. Based on previous work from our group, we hypothesized that a single systemic injection of recombinant bone morphogenetic protein-2 (rBMP-2) could be used to create such a model. The cDNA encoding mature human BMP-2 was expressed in BL21(DE3) bacteria, purified to homogeneity, and refolded as a dimer. Bioactivity was confirmed using a C2C12 alkaline phosphatase assay. rBMP-2 was radiolabeled with 99mTc, and its biodistribution and clearance were quantified after both intravenous (IV) and intraperitoneal (IP) injection. Fischer 344 rats bearing syngeneic R3230 breast tumors received a single intraperitoneal injection of rBMP-2 at a specified dose. Tumor microcalcification was quantified over time using micro-single photon emission computed tomography (SPECT) and microcomputed tomography (CT). rBMP-2 could be expressed in E. coli at high levels, isolated at >95% purity, and refolded to a bioactive dimer. Beta-phase half-life was 30.5 min after IV administration and 47.6 min after IP administration. Renal excretion was the primary mode of clearance. A single IP injection of ≥50 μg rBMP-2 when tumors were not yet palpable resulted in dose-dependent microcalcification in 8 of 8 R3230 tumors. No calcification was found in control tumors or in normal tissues and organs of animals injected with rBMP-2. Tumor calcification increased progressively between weeks 2 and 4 post-rBMP-2 injection. A single IP injection of rBMP-2 in rats bearing a syngeneic breast cancer will produce dose-dependent and time-dependent microcalcifications. This animal model lays the foundation for the development of novel diagnostic radiotracers for breast cancer.

    loading  Loading Related Articles