Electrolytic lesions of a discrete area within the nucleus accumbens shell attenuate the long-term expression, but not early phase, of sensitization to cocaine

    loading  Checking for direct PDF access through Ovid

Abstract

Repeated exposure to cocaine leads to behavioral sensitization, which is the augmentation of the locomotor response to a subsequent exposure to the drug. The nucleus accumbens (NAc), a major termination site of dopaminergic neurons, is believed to be involved in behavioral sensitization and studies have demonstrated that the NAc shell can be split into five zones of analysis; the vertex, arch, cone, intermediate and ventrolateral zones [Todtenkopf MS, Stellar JR. Assessment of tyrosine hydroxylase immunoreactive innervation in five subregions of the nucleus accumbens shell in rats treated with repeated cocaine. Synapse 2000;38:261–70]. Several reports show cocaine-induced c-fos expression particularly in the intermediate zone after 14, but not 2, drug-free days following repeated cocaine administration, suggesting that this region may be involved in sensitization and particularly in the later phase of expression, versus the earlier phase of sensitization. Bilateral electrolytic lesions of the intermediate zone were made in two groups of rats, which were then repeatedly exposed to cocaine (15 mg/kg, twice/day for 5 days). One group was subsequently given a single cocaine challenge injection (15 mg/kg) after 14 drug-free days, while the other group was challenged after only 2 drug-free days. Two sham surgery groups in which an electrode was lowered but no current was passed served as controls. Results show that lesioned animals as well as sham controls exhibited behavioral sensitization to the drug. However, following a 14-day drug-free period, the lesioned animals showed significant reduction in sensitization, compared to sham controls. Together these findings suggest that the intermediate zone of the NAc shell is indeed involved in the expression phase of behavioral sensitization to cocaine.

Related Topics

    loading  Loading Related Articles