CRTH2, a prostaglandin D2 receptor, mediates depression-related behavior in mice

    loading  Checking for direct PDF access through Ovid

Abstract

Depression is a complex neuropsychiatric disorder with an unclear molecular etiology. Inflammatory cytokines and molecular intermediates (including prostaglandins) are suggested to be involved in depression; however, the roles of prostaglandins and their respective receptors are largely unknown in depression. Using genetic and pharmacological approaches, we show here that chemoattractant receptor-homologous molecule expressed on T helper type 2 cells (CRTH2), a second receptor for prostaglandin D2 (PGD2), mediates depression-related behavior in mice. CRTH2-deficient (CRTH2−/−) mice showed antidepressant-like activity in a chronic corticosterone treatment-induced depression. Consistent with this observation, the pharmacological inhibition of CRTH2 via the clinically available drug ramatroban also rescued abnormal social interaction and depression-related behavior in well-established models, including chronic corticosterone-, lipopolysaccharide-, and tumor-induced pathologically relevant depression models. Importantly, chronic stress via corticosterone treatment increased mRNA levels in PGD2-producing enzymes, such as cyclooxygenase-2 and lipocalin-type PGD2 synthase, in the brain. Furthermore, the activity of the hippocampal noradrenergic system but not the dopaminergic or serotonergic systems was increased in CRTH2−/− mice. Together with the observation that untreated CRTH2−/− mice showed antidepressant-like activity in the forced swim test, these results provide evidence that central CRTH2-mediated signaling is critically involved in depression-related behavior.

Related Topics

    loading  Loading Related Articles