Behavioral activation sensitivity and default mode network-subgenual cingulate cortex connectivity in youth

    loading  Checking for direct PDF access through Ovid


HighlightsIncreased DMN-sgACC connectivity is consistently linked to affect dysregulation.BAS sensitivity may protect against affective disorders in at-risk youth.We found that BAS sensitivity predicts lower DMN-sgACC connectivity in youth.Changes in DMN-sgACC circuitry may underlie protective effects of BAS sensitivity.Increased resting-state functional connectivity (rsFC) between the default mode network (DMN) and subgenual anterior cingulate cortex (sgACC) is consistently reported in adults and youth with psychopathologies related to affect dysregulation (e.g. depression, posttraumatic stress disorder). This pattern of increased rsFC is thought to underlie ruminative thought patterns through integration of negative affect (via sgACC) into self-referential operations supported by the DMN. Neurobiological studies in adults show that behavioral activation system (BAS) sensitivity is a potential protective factor against the development of psychopathology, particularly in the context of stress and trauma exposure. However, whether BAS sensitivity is associated with variation in DMN-sgACC stress-vulnerability circuitry in youth, particularly those at risk for affect dysregulation, has not yet been studied. This association was tested in a sample of ninety-eight children and adolescents (ages 6–17) at high sociodemographic risk for psychopathology (i.e., urban, lower income, high frequency of violence and abuse exposure). Participants underwent a six-minute resting-state functional magnetic resonance imaging scan. Using a targeted, small-volume corrected approach, we found that youth with higher BAS sensitivity demonstrated lower DMN-sgACC rsFC, suggesting a potential link between the purported protective effects of BAS sensitivity and stress-vulnerability circuitry. This work suggests that interventions that augment BAS sensitivity, such as behavioral activation therapy, may protect against the development of stress-related psychopathology by modifying a critical rumination circuitry in the brain. Such interventions may be especially important for bolstering resiliency in at-risk urban youth, who are disproportionately burdened by early stress and associated psychopathology.

    loading  Loading Related Articles