Systemic administration of guanfacine improves food-motivated impulsive choice behavior primarily via direct stimulation of postsynaptic α2A-adrenergic receptors in rats

    loading  Checking for direct PDF access through Ovid


Impulsive choice behavior, which can be assessed using the delay discounting task, is a characteristic of various psychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD). Guanfacine is a selective α2A-adrenergic receptor agonist that is clinically effective in treating ADHD. However, there is no clear evidence that systemic guanfacine administration reduces impulsive choice behavior in the delay discounting task in rats.

In the present study, we examined the effect of systemic guanfacine administration on food-motivated impulsive choice behavior in rats and the neuronal mechanism underlying this effect. Repeated administration of either guanfacine, methylphenidate, or atomoxetine significantly enhanced impulse control, increasing the number of times the rats chose a large but delayed reward in a dose-dependent manner. The effect of guanfacine was significantly blocked by pretreatment with an α2A-adrenergic receptor antagonist. Furthermore, the effect of guanfacine remained unaffected in rats pretreated with a selective noradrenergic neurotoxin, consistent with a post-synaptic action. In contrast, the effect of atomoxetine on impulsive choice behavior was attenuated by pretreatment with the noradrenergic neurotoxin. These results provide the first evidence that systemically administered guanfacine reduces impulsive choice behavior in rats and that direct stimulation of postsynaptic, rather than presynaptic, α2A-adrenergic receptors is involved in this effect.

Related Topics

    loading  Loading Related Articles