Effects of taurine on striatal dopamine transporter expression and dopamine uptake in SHR rats

    loading  Checking for direct PDF access through Ovid

Abstract

Dopaminergic deficits in the prefrontal cortex and striatum have been attributed to the pathogenesis of attention-deficit hyperactivity disorder (ADHD). Our recent study revealed that high-dose taurine improves hyperactive behavior and brain-functional signals in SHR rats. This study investigates the effect of taurine on the SHR striatum by detecting the spontaneous alternation, DA transporter (DAT) level, dopamine uptake and brain-derived neurotrophic factor (BDNF) expression. A significant increase in the total arm entries was detected in both WKY and SHR rats fed with low-dose taurine but not in those fed with high-dose taurine. Notably, significantly increased spontaneous alternation was observed in SHR rats fed with high-dose taurine. Significantly higher striatal DAT level was detected in WKY rats fed with low-dose taurine but not in SHR rats, whereas significantly reduced striatal DAT level was detected in SHR rats fed with high-dose taurine but not in WKY rats. Significantly increased dopamine uptake was detected in the striatal synaptosomes of both WKY and SHR rats fed with low-dose taurine. Conversely, significantly reduced dopamine uptake was detected in the striatal synaptosomes of SHR rats fed with high-dose taurine. Accordingly, a negative correlation was detected between striatal dopamine uptake and spontaneous alternation in SHR rats fed with low or high-dose taurine. Significantly increased BDNF was detected in the striatum of both WKY and SHR rats fed with low or high-dose taurine. These findings indicate that different dosages of taurine have opposite effects on striatal DAT expression and dopamine uptake, suggesting high-dose taurine as a possible candidate for ADHD treatment.

Related Topics

    loading  Loading Related Articles