NMDA receptor GluN2A subunit deletion protects against dependence-like ethanol drinking

    loading  Checking for direct PDF access through Ovid


HIGHLIGHTSGluN2A KO mice exposed to chronic intermittent EtOH (CIE) were tested for EtOH consumption and BLA NMDAR-mediated synaptic transmission.CIE exposure increased EtOH drinking and preference in wildtype mice, but failed to do so in GluN2A KO mice.GluN2A KO mice did not exhibit CIE-related changes in BLA NMDAR-mediated synaptic transmission.The N-methyl-D-aspartate receptor (NMDAR) is mechanistically involved in the behavioral and neurophysiological effects of alcohol, but the specific role of the GluN2A subunit remains unclear. Here, we exposed mice with constitutive GluN2A gene knockout (KO) to chronic intermittent ethanol vapor (CIE) and tested for EtOH consumption/preference using a two-bottle choice paradigm, as well as NMDAR-mediated transmission at basolateral amygdala synapses via ex vivo slice electrophysiology. Results showed that GluN2A KO mice attained comparable blood EtOH levels in response to CIE exposure, but did not exhibit the significant increase in EtOH drinking that was observed in CIE-exposed wildtypes. GluN2A KO mice also showed no alterations in BLA NMDAR-mediated synaptic transmission after CIE, relative to air-exposed, whereas C57BL/6J mice showed an attenuated synaptic response to GluN2B antagonism. Taken together, these data add to mounting evidence supporting GluN2A-containing NMDARs as a mechanism underlying relative risk for developing EtOH dependence after repeated EtOH exposure.

    loading  Loading Related Articles