Cichlids do not adjust reproductive skew to the availability of independent breeding options

    loading  Checking for direct PDF access through Ovid


Helpers in cooperatively breeding species forego all or part of their reproduction when remaining at home and assisting breeders to raise offspring. Different models of reproductive skew generate alternative predictions about the share of reproduction unrelated subordinates will get depending on the degree of ecological constraints. Concession models predict a larger share when independent breeding options are good, whereas restraint and tug-of-war models predict no effects on reproductive skew. We tested these predictions by determining the share of reproduction by unrelated male and female helpers in the Lake Tanganyika cichlid Neolamprologus pulcher depending on experimentally manipulated possibilities for helper dispersal and independent breeding and depending on helper size and sex. We created 32 breeding groups in the laboratory, consisting of two breeders and two helpers each, where only the helpers had access to a nearby dispersal compartment with (treatment) or without (control) breeding substrate, using a repeated measures design. We determined the paternity and maternity of 1185 offspring from 47 broods using five to nine DNA microsatellite loci and found that: (1) helpers participated in reproduction equally across the treatments, (2) large male helpers were significantly more likely to reproduce than small helpers, and (3) male helpers engaged in significantly more reproduction than female helpers. Interestingly, in four broods, extragroup helper males had fertilized part of the brood. No helper evictions from the group after helper reproduction were observed. Our results suggest that tug-of-war models based on competition over reproduction within groups describe best the reproductive skew observed in our study system. Female breeders produced larger clutches in the treatment compared to the control situation when the large helpers were males. This suggests that male breeder-male helper reproductive conflicts may be alleviated by females producing larger clutches with helpers around.

    loading  Loading Related Articles