Molecular function of the prolylcis/transisomerase and metallochaperone SlyD

    loading  Checking for direct PDF access through Ovid

Abstract

SlyD is a bacterial two-domain protein that functions as a molecular chaperone, a prolyl cis/trans isomerase, and a nickel-binding protein. This review summarizes recent findings about the molecular enzyme mechanism of SlyD. The chaperone function located in one domain of SlyD is involved in twin-arginine translocation and increases the catalytic efficiency of the prolyl cis/trans isomerase domain in protein folding by two orders of magnitude. The C-terminal tail of SlyD binds Ni2+ ions and supplies them for the maturation of [NiFe] hydrogenases. A combined biochemical and biophysical analysis revealed the molecular basis of the delicate interplay of the different domains of SlyD for optimal function.

Related Topics

    loading  Loading Related Articles