Methylation of the nuclear poly(A)-binding protein by type I protein arginine methyltransferases - how and why

    loading  Checking for direct PDF access through Ovid


Asymmetric dimethylation of arginine side chains in proteins is a frequent posttranslational modification, catalyzed by type I protein arginine methyltransferases (PRMTs). This article summarizes what is known about this modification in the nuclear poly(A)-binding protein (PABPN1). PABPN1 contains 13 dimethylated arginine residues in its C-terminal domain. Three enzymes, PRMT1, 3, and 6, can methylate PABPN1. Although 26 methyl groups are transferred to one PABPN1 molecule, the PRMTs do so in a distributive reaction, i.e., only a single methyl group is transferred per binding event. As PRMTs form dimers, with the active sites accessible from a small central cavity, backbone conformation around the methyl-accepting arginine is an important determinant of substrate specificity. Neither the association of PABPN1 with poly(A) nor its role in poly(A) tail synthesis is affected by arginine methylation. At least at low protein concentration, methylation does not affect the protein’s tendency to oligomerize. The dimethylarginine residues of PABPN1 are located in the binding site for its nuclear import receptor, transportin. Arginine methylation weakens this interaction about 10-fold. Very recent evidence suggests that arginine methylation as a way of fine-tuning the interactions between transportin and its cargo may be a general mechanism.

Related Topics

    loading  Loading Related Articles