Strong pH dependence of coupling efficiency of the Na+ - translocating NADH:quinone oxidoreductase (Na+-NQR) ofVibrio cholerae

    loading  Checking for direct PDF access through Ovid

Abstract

The Na+-translocating NADH:quinone oxidoreductase (NQR) is the entry site for electrons into the respiratory chain of Vibrio cholerae, the causative agent of cholera disease. NQR couples the electron transfer from NADH to ubiquinone to the translocation of sodium ions across the membrane. We investigated the pH dependence of electron transfer and generation of a transmembrane voltage (ΔΨ) by NQR reconstituted in liposomes with Na+ or Li+ as coupling cation. ΔΨ formation was followed with the voltage-sensitive dye oxonol. With Na+, ΔΨ was barely influenced by pH (6.5-8.5), while Q reduction activity exhibited a maximum at pH 7.5-8.0. With Li+, ΔΨ was generally lower, and the pH profile of electron transfer activity did not reveal a pronounced maximum. We conclude that the coupling efficiency of NQR is influenced by the nature of the transported cation, and by the concentration of protons. The 3D structure of NQR reveals a transmembrane channel in subunit NqrB. It is proposed that partial uncoupling of the NQR observed with the smaller Li+, or with Na+ at pH 7.5-8.0, is caused by the backflow of the coupling cation through the channel in NqrB.

Related Topics

    loading  Loading Related Articles