Novel approach to quorum quenching: rational design of antibacterials in combination with hexahistidine-tagged organophosphorus hydrolase

    loading  Checking for direct PDF access through Ovid

Abstract

N-acyl homoserine lactones (AHLs) are quorum sensing (QS) signal molecules used by most Gram-negative pathogenic bacteria. In this article the lactonase activity of the preparations based on hexahistidine-tagged organophosphorus hydrolase (His6-OPH) towards AHLs was studied. Initially, three of the most interesting β-lactam antibiotics were selected from seven that were trialed during molecular docking to His6-OPH. Combinations of antibiotics (meropenem, imipenem, ceftriaxone) and His6-OPH taken in the native form or in the form of non-covalent enzyme-polyelectrolyte complexes (EPCs) with poly(glutamic acid) or poly(aspartic acid) were obtained and investigated. The lactonase activity of the preparations was investigated under different physical-chemical conditions in the hydrolysis of AHLs [N-butyryl-D,L-homoserine lactone, N-(3-oxooctanoyl)-D,L-homoserine lactone, N-(3-oxododecanoyl)-L-homoserine lactone]. An increased efficiency of catalytic action and stability of the lactonase activity of His6-OPH was shown for its complexes with antibiotics and was confirmed in trials with bacterial strains. The broadening of the catalytic action of the enzyme against AHLs was revealed in the presence of the meropenem. Results of molecular docking of AHLs to the surface of the His6-OPH dimer in the presence of antibiotics allowed proposing the mechanism of such interference based on a steric repulsion of the carbon chain of hydrolyzed AHLs by the antibiotics bounded to the enzyme surface.

Related Topics

    loading  Loading Related Articles