Binding affinity and agonist activity of putative endogenous cannabinoids at the human neocortical CB1 receptor

    loading  Checking for direct PDF access through Ovid


We investigated the affinity of putative endocannabinoids (2-arachidonylglycerol, 2-AG; noladin ether, virodhamine) for the human neocortical CB1 receptor. Functional activity of these compounds (including anandamide, AEA) was determined by examining basal and forskolin-stimulated cAMP formation. Assays were performed with synaptosomes, prepared from fresh human neocortical tissue. Receptor affinity was assessed from competition binding experiments with the CB1/2 agonist [3H]-CP55.940 in absence or presence of a protease inhibitor to assess enzymatic stability. Noladin ether and virodhamine inhibited [3H]-CP55.940 binding (Ki: 98, 1740 nM, respectively). Protease inhibition decreased the Ki value of virodhamine (Ki: 912 nM), but left that of noladin ether unchanged. 2-AG almost lacked affinity (Ki > 10 μM). Basal cAMP formation was unaffected by AEA and noladin ether, but strongly enhanced by 2-AG and virodhamine. Forskolin-stimulated cAMP formation was inhibited by AEA and noladin ether (IC50: 69, 427 nM, respectively) to the same extent as by CP55.940 (Imax each ˜30%). Inhibitions by AEA or noladin ether were blocked by the CB1 receptor antagonist AM251. Virodhamine increased forskolin-stimulated cAMP formation, also in presence of AM251, by ˜20%. 2-AG had no effect; in presence of AM251, however, 10 μM 2-AG stimulated cAMP formation by ˜15%. Our results suggest, that AEA and noladin ether are full CB1 receptor agonists in human neocortex, whereas virodhamine may act as a CB1 receptor antagonist/inverse agonist. Particularly the (patho)physiological role of 2-AG should be further investigated, since its CB1 receptor affinity and agonist activity especially in humans might be lower than generally assumed.

    loading  Loading Related Articles