Expression of glutathioneS-transferases in fetal lung and liver tissue from parental strains and F1 crosses between C57BL/6 and BALB/c F1 mice following in utero exposure to 3-methylcholanthrene


    loading  Checking for direct PDF access through Ovid

Abstract

GST isoforms have been extensively studied in adult tissues but little is known about the composition and levels of these enzymes in fetal tissues. As part of our ongoing studies to determine the potential role of metabolic enzymes in mediating the differential susceptibility of different strains of mice to lung tumorigenesis following in utero exposure to 3-methylcholanthrene (MC), we screened for GST enzyme activity and for expression of the individual GSTα, π, μ, and θ isoforms in murine fetal lung and liver tissues isolated from the parental strains and F1 crosses between C57BL/6 (B6) and BALB/c (C) mice. Using 1-chloro-2,4-dinitrobenzene (CDNB) as a substrate, we found that treatment with MC had no effect on the levels of GST enzyme activity in either the fetal lung or liver in either of the two parental strains or their F1 crosses. Low levels of expression of each of the four enzymes were detected by Western blotting in both fetal lung and liver tissues in all four strains. A statistically significant 3.5-fold induction was observed only for GSTμ in the fetal lung of the parental strain of BALB/c mice 48 h after exposure to MC. None of the other enzymes showed any significant differences in the levels of expression following exposure to MC. Although strain-specific differences in the expression of the GSTs that were independent of MC treatment were observed, they could not account for the differences previously observed in either the Ki-ras mutational spectrum or lung tumor incidence in the different strains of mice. Similar results were obtained when the maternal metabolism of MC was assayed in liver microsomal preparations. The results are consistent with previous studies showing low levels and poor inducibility of phase II enzymes during gestation, and demonstrate for the first time that all four of the major GST enzymes are expressed in fetal tissues. While the high inducibility of activating enzymes, such as Cyp1a1, and low, uninducible levels of phase II conjugating enzymes probably account for the high susceptibility of the fetus to transplacentally induced tumor formation, the results also suggest that factors other than metabolism may account for the strain-specific differences in susceptibility to carcinogen-mediated lung tumor induction following in utero exposure to chemical carcinogens.

    loading  Loading Related Articles