Development of a dynamic model for real-time determination of membrane-bound acetylcholinesterase activity upon perfusion with inhibitors and reactivators


    loading  Checking for direct PDF access through Ovid

Abstract

Quantitative predictions of the course of acetylcholinesterase (AChE) activity, following interference of inhibitors and reactivators, are usually obscured by the time-dependent changes of all reaction partners. To mimic these dynamics we developed an in vitro model. Immobilized human erythrocyte ghosts in a bioreactor were continuously perfused while AChE activity was monitored by a modified Ellman method. The perfusion system consisted of two HPLC pumps with integrated quaternary low-pressure gradient formers that were programmed by a computer using commercial HPLC software. The combined eluates passed a particle filter (Millex®-GS, 0.22 μm) containing a thin layer of erythrocytes that was immersed in a temperature-controlled water bath. The effluent passed a flow cell in a UV-vis detector, the signal of which was digitized, written to disc and calculated with curve fitting programs. AChE activity decreased by 3.4% within 2.5 h. The day-to-day variation of the freshly prepared bioreactor using the same enzyme source was ±3.3%. Residual activity of 0.2% marked the limit of quantification. Following perfusion with paraoxon, pseudo first-order rate constants of inhibition were established that did not differ from results obtained in conventional assays. The same holds true for reactivation with obidoxime. The set-up presented allows freely programmable time-dependent changes of up to eight solvents to mimic pharmacokinetic profiles without accumulation of products. Due to some hysteresis in the system, reaction half-lives should be >3 min and concentration changes in critical compounds should exceed half-lives of 5 min. Otherwise, the system offers much flexibility and operates with high precision.

    loading  Loading Related Articles