CDC50A plays a key role in the uptake of the anticancer drug perifosine in human carcinoma cells

    loading  Checking for direct PDF access through Ovid


Functional aminophospholipid translocases are composed of at least two proteins: an alpha subunit from the P4 subfamily of P-type ATPases and a beta subunit from the CDC50-Lem3p family. Over-expression and knockdown of the human beta subunit CDC50A in KB cells enhanced and decreased, respectively, the uptake of both fluorescent aminophospholipid analogues and the anticancer alkyl-phospholipid perifosine. Confocal microscopy showed that CDC50A-V5 was localized at the endoplasmic reticulum and the Golgi complex of both KB (perifosine-sensitive) and KB PER-R (perifosine-resistant, alkyl-phospholipid uptake deficient) cells, but was only widely distributed in the early and late endosomes in KB cells. Biotinylation of cell surface proteins allowed CDC50A-V5 to be detected in the plasma membrane of KB cells but not in KB PER-R cells, thereby suggesting a defect in CDC50A trafficking that could explain the inability of KB PER-R to uptake perifosine. Over-expression of CDC50A in HeLa and HEK293T cells did not increase uptake, since the protein was retained at the endoplasmic reticulum and Golgi. However, when CDC50A was co-expressed with the P4-ATPase Atp8b1, the two proteins co-localized at the plasma membrane and the uptake of aminophospholipids and perifosine increased strikingly in both cell lines. These findings suggest that CDC50A plays a key role in perifosine uptake in human cells, presumably by forming a functional plasma membrane translocator in combination with a P4-ATPase.

    loading  Loading Related Articles