Thonzonium bromide inhibits RANKL-induced osteoclast formation and bone resorptionin vitroand prevents LPS-induced bone lossin vivo

    loading  Checking for direct PDF access through Ovid


Graphical abstractOsteoclasts (OCs) play a pivotal role in a variety of lytic bone diseases including osteoporosis, arthritis, bone tumors, Paget's disease and the aseptic loosening of orthopedic implants. The primary focus for the development of bone-protective therapies in these diseases has centered on the suppression of OC formation and function. In this study we report that thonzonium bromide (TB), a monocationic surface-active agent, inhibited RANKL-induced OC formation, the appearance of OC-specific marker genes and bone-resorbing activity in vitro. Mechanistically, TB blocked the RANKL-induced activation of NF-κB, ERK and c-Fos as well as the induction of NFATc1 which is essential for OC formation. TB disrupted F-actin ring formation resulting in disturbances in cytoskeletal structure in mature OCs during bone resorption. Furthermore, TB exhibited protective effects in an in vivo murine model of LPS-induced calvarial osteolysis. Collectively, these data suggest that TB might be a useful alternative therapy in preventing or treating osteolytic diseases.

    loading  Loading Related Articles