Biodegradation of selected UV-irradiated and non-irradiated polycyclic aromatic hydrocarbons (PAHs)


    loading  Checking for direct PDF access through Ovid

Abstract

Biodegradation of UV-irradiated anthracene, pyrene, benz[a]anthracene, and dibenz[a, h]anthracene was compared to that of the non-irradiated samples, individually and in synthetic mixtures with enrichment cultures. Combined treatment was repeated for individual anthracene and for the PAH mixture with Sphingomonas sp. strain EPA 505 and Sphingomonas yanoikuyae. Enrichment culture studies were performed on the PAH mixtures in the presence of the main photoproduct of anthracene, pure 9,10-anthracenedione. Photochemically pretreated creosote solutions were also subjected to biodegradation and the results were compared to those of the non-irradiated solutions. The primary interest was on 16 polycyclic aromatic hydrocarbons (PAHs) listed as priority pollutants by European Union (EU) and the United States Environmental Protection Agency (USEPA). Irradiation accelerated the biodegradation onset for anthracene, pyrene, and benz[a]anthracene when they were treated individually. The biodegradation of irradiated pyrene started with no lag phase andwas complete by 122 h whereas biodegradation of the non-irradiated sample had a lag of 280 h and resulted in complete degradation by 720 h. Biodegradation of PAHs was accelerated in synthetic mixtures, especially in the presence of pure 9,10-anthracenedione. In general, irradiation had no effect on the biodegradation of PAHs incubated in synthetic mixtures or with pure cultures. Under current experimental conditions, the UV-irradiation invariably reduced the biodegradation of PAHs in creosote. Based on the results of the present and previous photochemical-biological studies of PAHs, the influence of the photochemical pretreatment on the biodegradation is highly dependent on the compounds being treated and other process parameters.

    loading  Loading Related Articles