Attenuation of Carbon Tetrachloride-Induced Hepatic Injury with Curcumin-Loaded Solid Lipid Nanoparticles

    loading  Checking for direct PDF access through Ovid

Abstract

Background and Objectives

Curcumin, an established pleiotropic agent, has potential for hepatoprotection owing to its powerful antioxidant, anti-inflammatory, and antifibrogenic properties. However, its poor bioavailability limits its use in therapeutics. In this study, we aimed to package curcumin into solid lipid nanoparticles (C-SLNs) to improve its bioavailability and compare the efficacy of C-SLNs with that of free curcumin and silymarin, a well-established hepatoprotectant in clinical use, against carbon tetrachloride (CCl4)-induced hepatic injury in rats, post-induction. A self-recovery group to which no treatment was given was also employed for quantifying self-healing of hepatic tissue, if any.

Material and Methods

C-SLNs (particle size 147.6 nm), prepared using a microemulsification technique, were administered to rats post-treatment with CCl4 (1 ml/kg body weight [BW] twice weekly for 2 weeks, followed by 1.5 ml/kg BW twice weekly for the subsequent 2 weeks). The extent of liver damage and repair in terms of histopathology and levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), oxidative stress markers (malondialdehyde, superoxide dismutase, and reduced glutathione) and a pro-inflammatory response marker, tumor necrosis factor (TNF)-α, were determined in both the CCl4 group and the treatment groups.

Results

C-SLNs (12.5 mg/kg) significantly (p < 0.001-0.005) attenuated histopathological changes and oxidative stress, and also decreased induction of ALT, AST, and TNF-α in comparison with free curcumin (100 mg/kg), silymarin (25 mg/kg), and self-recovery groups.

Conclusion

Curcumin could be used as a therapeutic agent for hepatic disorders, provided it is loaded into a suitable delivery system.

Related Topics

    loading  Loading Related Articles