BioOptimizer: a Bayesian scoring function approach to motif discovery

    loading  Checking for direct PDF access through Ovid

Abstract

Motivation

Transcription factors (TFs) bind directly to short segments on the genome, often within hundreds to thousands of base pairs upstream of gene transcription start sites, to regulate gene expression. The experimental determination of TFs binding sites is expensive and time-consuming. Many motif-finding programs have been developed, but no program is clearly superior in all situations. Practitioners often find it difficult to judge which of the motifs predicted by these algorithms are more likely to be biologically relevant.

Results

We derive a comprehensive scoring function based on a full Bayesian model that can handle unknown site abundance, unknown motif width and two-block motifs with variable-length gaps. An algorithm called BioOptimizer is proposed to optimize this scoring function so as to reduce noise in the motif signal found by any motif-finding program. The accuracy of BioOptimizer, which can be used in conjunction with several existing programs, is shown to be superior to using any of these motif-finding programs alone when evaluated by both simulation studies and application to sets of co-regulated genes in bacteria. In addition, this scoring function formulation enables us to compare objectively different predicted motifs and select the optimal ones, effectively combining the strengths of existing programs.

Related Topics

    loading  Loading Related Articles