Muxstep: an open-source C ++ multiplex HMM library for making inferences on multiple data types

    loading  Checking for direct PDF access through Ovid

Abstract

Motivation: With the development of experimental methods and technology, we are able to reliably gain access to data in larger quantities, dimensions and types. This has great potential for the improvement of machine learning (as the learning algorithms have access to a larger space of information). However, conventional machine learning approaches used thus far on single-dimensional data inputs are unlikely to be expressive enough to accurately model the problem in higher dimensions; in fact, it should generally be most suitable to represent our underlying models as some form of complex networksng;nsio with nontrivial topological features. As the first step in establishing such a trend, we present muxstep, an open-source library utilising multiplex networks for the purposes of binary classification on multiple data types. The library is designed to be used out-of-the-box for developing models based on the multiplex network framework, as well as easily modifiable to suit problem modelling needs that may differ significantly from the default approach described.

Availability and Implementation: The full source code is available on GitHub: https://github.com/PetarV-/muxstep

Contact:petar.velickovic@cl.cam.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

Related Topics

    loading  Loading Related Articles