Survival analysis without survival data: connecting length-biased and case-control data

    loading  Checking for direct PDF access through Ovid


We show that relative mean survival parameters of a semiparametric log-linear model can be estimated using covariate data from an incident sample and a prevalent sample, even when there is no prospective follow-up to collect any survival data. Estimation is based on an induced semiparametric density ratio model for covariates from the two samples, and it shares the same structure as for a logistic regression model for case-control data. Likelihood inference coincides with well-established methods for case-control data. We show two further related results. First, estimation of interaction parameters in a survival model can be performed using covariate information only from a prevalent sample, analogous to a case-only analysis. Furthermore, propensity score and conditional exposure effect parameters on survival can be estimated using only covariate data collected from incident and prevalent samples.

Related Topics

    loading  Loading Related Articles