Varying-coefficient models and basis function approximations for the analysis of repeated measurements


    loading  Checking for direct PDF access through Ovid

Abstract

SUMMARYA global smoothing procedure is developed using basis function approximations for estimating the parameters of a varying-coefficient model with repeated measurements. Inference procedures based on a resampling subject bootstrap are proposed to construct confidence regions and to perform hypothesis testing. Conditional biases and variances of our estimators and their asymptotic consistency are developed explicitly. Finite sample properties of our procedures are investigated through a simulation study. Application of the proposed approach is demonstrated through an example in epidemiology. In contrast to the existing methods, this approach applies whether or not the covariates are time-invariant and does not require binning of the data when observations are sparse at distinct observation times.

    loading  Loading Related Articles