The ubiquitous isoform of Na/K-ATPase (ATP1A1) regulates junctional proteins, connexin 43 and claudin 11 via Src-EGFR-ERK1/2-CREB pathway in rat Sertoli cells†

    loading  Checking for direct PDF access through Ovid


Interaction of Na/K-ATPase with its ligand ouabain has been implicated in the regulation of various biological processes. The objective was to investigate roles of Na/K-ATPase isoforms in formation and function of junctional complexes in Sertoli cells. Primary cultures of Sertoli cells were obtained by enzymatic digestion of 20-day-old rat testes and grown on Matrigel-coated dishes for 7 days. Sertoli cells predominantly expressed the ubiquitous isoform of Na/K-ATPase (ATP1A1), confirmed by immunoblotting, PCR, immunofluorescence, and mass spectrometry. Treatment of Sertoli cells with 50 nM ouabain increased transepithelial electrical resistance (TER) and expression of claudin 11 (tight junctions) and connexin 43 (gap junctions), whereas 1 mM ouabain had opposite effects. Involvement of Src-EGFR-ERK1/2-CREB pathway in ouabain-mediated expression of claudin 11 and connexin 43 was evaluated. Incubation of Sertoli cells with 50 nM ouabain increased content of p-Src, p-EGFR, p-ERK1/2, and p-CREB; in contrast, 1 mM ouabain decreased phosphorylation of these signaling molecules. Preincubation of Sertoli cells with inhibitors of Src and MAPK pathways inhibited ouabain-induced effects on these signaling molecules, TER, and expression of claudin 11 and connexin 43. In conclusion, we inferred that ATP1A1 regulated Sertoli cell tight junctions and gap junctions through the Src-EGFR-ERK1/2-CREB pathway. Ouabain is an endogenous steroid; therefore, its interaction with ATP1A1 may be a critical signaling mechanism for the regulation of Sertoli cell function and male fertility.

Related Topics

    loading  Loading Related Articles