Mechanisms for the species difference between mouse and pig oocytes in their sensitivity to glucorticoids

    loading  Checking for direct PDF access through Ovid


Although in vitro exposure to physiological concentrations of glucorticoids did not affect maturation of mouse oocytes, it significantly inhibited nuclear maturation of pig oocytes. Studies on this species difference in oocyte sensitivity to glucocorticoids will contribute to our understanding of how stress/glucocorticoids affect oocytes. We showed that glucorticoid receptors (NR3C1) were expressed in both oocytes and cumulus cells (CCs) of both pigs and mice; however, while cortisol inhibition of oocyte maturation was overcome by NR3C1 inhibitor RU486 in pigs, it could not be relieved by RU486 in mice. The mRNA level of 11β-hydroxysteroid dehydrogenase 1 (HSD11B1) was significantly higher than that of HSD11B2 in pig cumulus-oocyte complexes (COCs), whereas HSD11B2 was exclusively expressed in mouse COCs. Pig and mouse cumulus-denuded oocytes (DOs) expressed HSD11B2 predominantly and exclusively, respectively. In the presence of cortisol, although inhibiting HSD11B2 decreased maturation rates of COCs in both species, inhibiting HSD11B1 improved maturation of pig COCs while having no effect on mouse COCs. Cortisol-cortisone interconversion observation confirmed high HSD11B1 activities in pig oocytes but none in mouse oocytes, a higher HSD11B2 activity in mouse than in pig oocytes, and a rapid cortisol-cortisone interconversion in pig COCs catalyzed by HSD11B1 from CCs and HSD11B2 from DOs. In conclusion, the species difference in glucocorticoid sensitivity between pig and mouse oocytes is caused by their different contents/ratios of HSD11B1 and HSD11B2, which maintain different concentrations of active glucocorticoids. While cortisol inhibited pig oocytes by interacting with NR3C1, glucocorticoid suppression of mouse oocytes was apparently not mediated by NR3C1.

    loading  Loading Related Articles