Investigation of vinegar production using a novel shaken repeated batch culture system

    loading  Checking for direct PDF access through Ovid


Nowadays, bioprocesses are developed or optimized on small scale. Also, vinegar industry is motivated to reinvestigate the established repeated batch fermentation process. As yet, there is no small-scale culture system for optimizing fermentation conditions for repeated batch bioprocesses. Thus, the aim of this study is to propose a new shaken culture system for parallel repeated batch vinegar fermentation. A new operation mode — the flushing repeated batch — was developed. Parallel repeated batch vinegar production could be established in shaken overflow vessels in a completely automated operation with only one pump per vessel. This flushing repeated batch was first theoretically investigated and then empirically tested. The ethanol concentration was online monitored during repeated batch fermentation by semiconductor gas sensors. It was shown that the switch from one ethanol substrate quality to different ethanol substrate qualities resulted in prolonged lag phases and durations of the first batches. In the subsequent batches the length of the fermentations decreased considerably. This decrease in the respective lag phases indicates an adaptation of the acetic acid bacteria mixed culture to the specific ethanol substrate quality. Consequently, flushing repeated batch fermentations on small scale are valuable for screening fermentation conditions and, thereby, improving industrial-scale bioprocesses such as vinegar production in terms of process robustness, stability, and productivity. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1158–1168, 2013

Related Topics

    loading  Loading Related Articles