Autophagy, mitochondria and 3-nitropropionic acid joined in the same model

    loading  Checking for direct PDF access through Ovid


Huntington's disease (HD) is a neurodegenerative disorder caused by a mutation in the gene encoding the huntingtin protein. Although the precise mechanism by which neuronal degeneration occurs is still unclear, several elements are important to its development: (1) altered gene expression and protein synthesis, (2) mitochondrial damage and (3) improper regulation of the autophagy programme. In this issue of British Journal of Pharmacology, Galindo and co-workers provide the first evidence for a role of the mitochondrial permeability transition pore (mPTP) in mitochondrial fragmentation and autophagy activation. In a model of cell death induced by 3-nitropropionic acid (3-NP) in human neural cells, the authors describe clear functions for mPTP and Bax, but not the mitochondrial fusion/fission machinery, mitochondrial fragmentation and autophagy (mitophagy). This commentary summarises the significance of this relationship and suggests several points for future development.


This article is a commentary on Solesio et al., pp. 63–75 of this issue. To view this paper visit

Related Topics

    loading  Loading Related Articles