The time-course of cortical responses to speech revealed by fast optical imaging

    loading  Checking for direct PDF access through Ovid


HighlightsFast optical imaging shows encoding of continuous cues to speech sounds in PT/pSTG.Sensitivity is maintained in multiple areas over the first 200 ms of processing.Speech sounds are grouped into categories in IFG within 50 ms of cue encoding.Cue and category representations overlap in time during early speech processing.Recent work has sought to describe the time-course of spoken word recognition, from initial acoustic cue encoding through lexical activation, and identify cortical areas involved in each stage of analysis. However, existing methods are limited in either temporal or spatial resolution, and as a result, have only provided partial answers to the question of how listeners encode acoustic information in speech. We present data from an experiment using a novel neuroimaging method, fast optical imaging, to directly assess the time-course of speech perception, providing non-invasive measurement of speech sound representations, localized to specific cortical areas. We find that listeners encode speech in terms of continuous acoustic cues at early stages of processing (ca. 96 ms post-stimulus onset), and begin activating phonological category representations rapidly (ca. 144 ms post-stimulus). Moreover, cue-based representations are widespread in the brain and overlap in time with graded category-based representations, suggesting that spoken word recognition involves simultaneous activation of both continuous acoustic cues and phonological categories.

    loading  Loading Related Articles