Improving protein identification from tandem mass spectrometry data by one-step methods and integrating data from other platforms

    loading  Checking for direct PDF access through Ovid


Motivation: Many approaches have been proposed for the protein identification problem based on tandem mass spectrometry (MS/MS) data. In these experiments, proteins are digested into peptides and the resulting peptide mixture is subjected to mass spectrometry. Some interesting putative peptide features (peaks) are selected from the mass spectra. Following that, the precursor ions undergo fragmentation and are analyzed by MS/MS. The process of identification of peptides from the mass spectra and the constituent proteins in the sample is called protein identification from MS/MS data. There are many two-step protein identification procedures, reviewed in the literature, which first attempt to identify the peptides in a separate process and then use these results to infer the proteins. However, in recent years, there have been attempts to provide a one-step solution to protein identification, which simultaneously identifies the proteins and the peptides in the sample.

Results: In this review, we briefly introduce the most popular two-step protein identification procedure, PeptideProphet coupled with ProteinProphet. Following that, we describe the difficulties with two-step procedures and review some recently introduced one-step protein/peptide identification procedures that do not suffer from these issues. The focus of this review is on one-step procedures that are based on statistical likelihood-based models, but some discussion of other one-step procedures is also included. We report comparative performances of one-step and two-step methods, which support the overall superiorities of one-step procedures. We also cover some recent efforts to improve protein identification by incorporating other molecular data along with MS/MS data.

Related Topics

    loading  Loading Related Articles