Nonsense-mediated mRNA decay: from mechanistic insights to impacts on human health

    loading  Checking for direct PDF access through Ovid


Cells are able to recognize and degrade aberrant transcripts in order to self-protect from potentially toxic proteins. Various pathways detect aberrant RNAs in the cytoplasm and are dependent on translation. One of these pathways is the nonsense-mediated RNA decay (NMD). NMD is a surveillance mechanism that degrades transcripts containing nonsense mutations, preventing the translation of possibly harmful truncated proteins. For example, the degradation of a nonsense harming β-globin allele renders normal phenotypes. On the other hand, regulating NMD is also important in those cases when the produced aberrant protein is better than having no protein, as it has been shown for cystic fibrosis. These findings reflect the important role for NMD in human health. In addition, NMD controls the levels of physiologic transcripts, which defines this pathway as a novel gene expression regulator, with huge impact on homeostasis, cell growth and development. While the mechanistic details of NMD are being gradually understood, the physiological role of this RNA surveillance pathway still remains largely unknown. This is a brief and simplified review on various aspects of NMD, such as the nature of the NMD targets, the mechanism of target degradation and the links between NMD and cell growth, animal development and diseases.

Related Topics

    loading  Loading Related Articles