Effects of exposure to simulated microgravity on neuronal catecholamine release and blood pressure responses to norepinephrine and angiotensin

    loading  Checking for direct PDF access through Ovid

Abstract

We tested the hypothesis that exposure to microgravity reduces the neuronal release of catecholamines and blood pressure responses to norepinephrine and angiotensin. Eight men underwent 30 days of 6° head-down tilt (HDT) bedrest to simulate exposure to microgravity. Plasma norepinephrine and mean arterial blood pressure (MAP) were measured before and after a cold pressor test (CPT) and graded norepinephrine infusion (8, 16 and 32 ng/kg/min) on day 6 of a baseline control period (C6) and on days 14 and 27 of HDT. MAP and plasma angiotensin II (Ang-II) were measured during graded Ang-II infusion (1, 2 and 4 ng/kg/min) on C8 and days 16 and 29 of HDT. Baseline total circulating norepinephrine was reduced from 1017 ng during the baseline control period to 610 ng at day 14 and 673 ng at day 27 of HDT, confirming a hypoadrenergic state. An elevation of norepinephrine (+178 ng) to the CPT during the baseline control period was eliminated by HDT days 14 and 27. During norepinephrine infusion, similar elevations in plasma norepinephrine (7.7 pg/ml/ng/kg/min) caused similar elevations in MAP (0.12 mmHg/ng/kg/min) across all test days. Ang-II infusion produced higher levels of plasma Ang-II during HDT (47.3 pg/ml) than during baseline control (35.5 pg/ml), while producing similar corresponding elevations in blood pressure. While vascular responsiveness to norepinephrine appears unaffected, impaired neuronal release of norepinephrine and reduced vascular responsiveness to Ang-II might contribute to the lessened capacity to vasoconstrict after spaceflight. The time course of alterations indicates effects that occur within two weeks of exposure.

Related Topics

    loading  Loading Related Articles