Na+/H+ exchanger 1, Na+/Ca2+ exchanger 1 and calmodulin complex regulates interleukin 6-mediated cellular behavior of human hepatocellular carcinoma

    loading  Checking for direct PDF access through Ovid


Interleukin 6 (IL6) is a key cytokine involved in the development and progression of inflammation-associated hepatocellular carcinoma (HCC). However, the mechanisms of IL6 action on HCC remain largely unknown. Proton and Ca2+ are two intracellular messenger ions, which are believed to play a central role in tumorigenesis and tumor progression. In this study, we found that IL6 stimulation markedly increased intracellualr pH recovery rates of human HCC cells, Huh7 and HepG2, after NH4Cl acidification, and the NH4Cl acidification induced transient intracellular Ca2+ increases in the HCC cells. The inhibition of Na+/H+ exchanger 1 (NHE1), Na+/Ca2+ exchanger 1 (NCX1) and calmodulin (CaM) inhibited the IL6 stimulation-induced intracellular pH recovery increases and NH4Cl acidification-induced intracellular Ca2+ increases. IL6 stimulation also induced the structural interaction of NHE1, NCX1 and CaM proteins. The protein expression levels of NHE1, NCX1 and CaM in native human HCC tissues were markedly higher than those in normal liver tissues. IL6 upregulated the expressions of NHE1, NCX1 and CaM in Huh7 and HepG2 cells. NHE1, NCX1 and CaM mediated the promotion of IL6 on the proliferation, migration and invasion of Huh7 and HepG2 cells and the growth of HCC in nude mice. In conclusion, IL6 activates the functional activity of NHE1 and induces the functional and structural interaction of NHE1, NCX1 and CaM. The interaction of NHE1, NCX1 and CaM mediates the effects of IL6 on human HCC.

Related Topics

    loading  Loading Related Articles