Genetic variant in DNA repair gene : a large-scale analysis of six published GWAS datasets in the TRICL consortiumGTF2H4: a large-scale analysis of six published GWAS datasets in the TRICL consortium is associated with lung cancer risk: a large-scale analysis of six published GWAS datasets in the TRICL consortium

    loading  Checking for direct PDF access through Ovid

Abstract

DNA repair pathways maintain genomic integrity and stability, and dysfunction of DNA repair leads to cancer. We hypothesize that functional genetic variants in DNA repair genes are associated with risk of lung cancer. We performed a large-scale meta-analysis of 123,371 single nucleotide polymorphisms (SNPs) in 169 DNA repair genes obtained from six previously published genome-wide association studies (GWASs) of 12160 lung cancer cases and 16838 controls. We calculated odds ratios (ORs) with 95% confidence intervals (CIs) using the logistic regression model and used the false discovery rate (FDR) method for correction of multiple testing. As a result, 14 SNPs had a significant odds ratio (OR) for lung cancer risk with PFDR < 0.05, of which rs3115672 in MSH5 (OR = 1.20, 95% CI = 1.14–1.27) and rs114596632 in GTF2H4 (OR = 1.19, 95% CI = 1.12–1.25) at 6q21.33 were the most statistically significant (Pcombined = 3.99×10−11 and Pcombined = 5.40×10−10, respectively). The MSH5 rs3115672, but not GTF2H4 rs114596632, was strongly correlated with MSH5 rs3131379 in that region (r2 = 1.000 and r2 = 0.539, respectively) as reported in a previous GWAS. Importantly, however, the GTF2H4 rs114596632 T, but not MSH5 rs3115672 T, allele was significantly associated with both decreased DNA repair capacity phenotype and decreased mRNA expression levels. These provided evidence that functional genetic variants of GTF2H4 confer susceptibility to lung cancer.

Related Topics

    loading  Loading Related Articles