Hepatocyte growth factor induces colonic cancer cell invasiveness via enhanced motility and protease overproduction. Evidence for PI3 kinase and PKC involvement


    loading  Checking for direct PDF access through Ovid

Abstract

Tumour progression to the metastatic phenotype is mainly dependent on tumour cell invasiveness. Cell migration is a crucial step in this process. Here we investigate the effect of hepatocyte growth factor (HGF) on the induction of in vitro invasiveness of poorly aggressive Caco-2 colonic cancer epithelial cells. Invasion assays through a Matrigel barrier were performed. Proteases were assessed by zymography, reverse transcription–polymerase chain reaction and immunoblotting. Caco-2 cells were found to express HGF receptor but not HGF and to secrete several proteases, namely matrix metalloproteinase-1 (MMP-1), MMP-2, possibly MMP-9 and urokinase plasminogen activator (uPA). Exogenous HGF promoted invasiveness of Caco-2 cells through an artificial basement membrane matrix and enhanced their production of proteases. In addition, analyses of media at the end of invasion assays indicated that anti-HGF antibody inhibited protease production in parallel with cell invasion. The involvement of proteases in the HGF-induced invasion process was further investigated using either a synthetic general MMP inhibitor or neutralizing antibodies against MMPs or uPA. All components significantly inhibited HGF-promoted cell invasion. Moreover, specific inhibitors of PKCα/β1 and PI3 kinase also decreased both HGF-promoted cell invasion and protease expression in invasion assay media. Thus, our findings provide evidence that the process of HGF-activated invasiveness of Caco-2 cells involves PI3 kinase and PKC and results from close association of two events, stimulation of cell motile activity and concomitant overproduction of proteases, which permits cell migration through a degraded extracellular matrix.

    loading  Loading Related Articles