Challenges of measuring monoclonal proteins in serum

    loading  Checking for direct PDF access through Ovid

Abstract

The measurement of monoclonal protein (M-protein) is vital for stratifying risk and following individuals with a variety of monoclonal gammopathies. Direct measurement of the M-protein spike by electrophoresis and immunochemical measurements of specific isotypes or free light chains pairs has provided useful information about the quantity of M-protein. Nonetheless, both traditional electrophoresis and immunochemical methods give poor quantification with M-proteins smaller than 10 g/L (1 g/dL) when in the presence of polyclonal immunoglobulins that co-migrate with the M-protein. In addition, measurements by electrophoresis of M-proteins migrating in the β- and α-regions are contaminated by normal serum proteins in those regions. The most precise electrophoretic method to date for quantification involves exclusion of the polyclonal immunoglobulins by using the tangent skimming method on electropherograms, which provides a 10-fold improvement in precision. So far, however, tangent measurements are limited to γ migrating M-proteins. Another way to improve M-protein measurements is the use of capillary electrophoresis (CE). With CE, one can employ immunosubtraction to select a region of interest in the β region thereby excluding much of the normal proteins from the M-protein measurement. Recent development of an immunochemical method distinguishing heavy/light chain pairs (separately measuring IgGK and IgGL, IgAK and IgAL, and IgMK and IgML) provides measurements that could exclude polyclonal contaminants of the same heavy chain with the uninvolved light chain type. Yet, even heavy/light results contain an immeasurable quantity of polyclonal heavy/light chains of the involved isotype. Finally, use of liquid chromatography-tandem mass spectrometry (LC-MS/MS) looms on the horizon as a means to provide more consistent and sensitive measurements of M-proteins.

Related Topics

    loading  Loading Related Articles