Manipulation of Object Choice by Electrical Microstimulation in Macaque Frontal Eye Fields

    loading  Checking for direct PDF access through Ovid

Abstract

For each saccade, we select an object to direct gaze and to specify the direction and amplitude of eye movement. Although these 2 processes are inevitably interdependent when visual stimuli are held stationary, several lines of evidence suggest that the neuronal signals in the frontal eye fields (FEF) that underlie the selection of visual objects are distinct from those underlying the selection of saccades. In the present study, we overtly dissociated these 2 processes spatially and temporally using the covert object-tracking paradigm, in which 4 identical objects moved randomly for 3 s before monkeys made a saccade to a previously selected target. To assess the causal role of the FEF in the 2 selection processes, we applied electrical microstimulation to the FEF at various times during the motion period. When stimulation was delivered at the motion onset, animals tended to choose an object that was initially presented at a particular location depending on the stimulation site. In contrast, the same stimulation delivered at the motion end failed to alter saccade end points. These results indicate that manipulation of FEF activity can change the selection of a visual object without affecting saccade goals, suggesting the existence of neurons solely regulating visual selection.

Related Topics

    loading  Loading Related Articles