Functional Diversity of Layer IV Spiny Neurons in Rat Somatosensory Cortex: Quantitative Morphology of Electrophysiologically Characterized and Biocytin Labeled Cells


    loading  Checking for direct PDF access through Ovid

Abstract

Previous analyses of the spiny layer IV neurons have almost exclusively focused on spiny stellate cells. Here we provide detailed morphological data characterizing three subpopulations of spiny neurons in slices of adolescent rats: (i) spiny stellate cells (58%), (ii) star pyramidal cells (25%) and (iii) pyramidal cells (17%), which can be distinguished objectively by the preferential orientation of their dendritic stems. Spiny stellate cells lacked an apical dendrite and frequently confined their dendritic and axonal arbors to the respective column. Star pyramidal and pyramidal cells possessed an apical dendrite, which reached the supragranular layers. Their axonal arbors were similar, showing both a columnar component and transcolumnar branches with direct transbarrel projections. However, a small fraction of star pyramidal cells possessed few or even no transcolumnar branches. Electrophysiologically, all three types of neurons were either regular-spiking or intrinsically burst-spiking without a significant relation to the morphological subtypes. The basic synaptic properties of thalamic inputs were also independent of the type of target layer IV spiny neuron. All remained subthreshold and showed paired-pulse depression. In conclusion, the columnar axonal arborization of spiny stellate cells is supplemented by a significant oblique to horizontal projection pattern in pyramidal-like neurons. This offers a structural basis for either segregation or early context-dependent integration of tactile information, in a cell-type specific manner.

    loading  Loading Related Articles