Shape Selectivity for Camouflage-Breaking Dynamic Stimuli in Dorsal V4 Neurons


    loading  Checking for direct PDF access through Ovid

Abstract

Motion is a potent cue for breaking camouflage in the natural world. To understand the neural basis of this phenomenon, one must utilize moving shapes defined by coherent motion of random texture elements against a similar, but stationary texture. To investigate how well neurons in area V4 process this novel, ecologically relevant stimulus and to compare shape selectivity for these shapes with static and other moving shapes, we tested V4 neurons with 5 static or moving shapes defined either by luminance or kinetic cues. The kinetic cues included a temporal frequency cue due to the difference in temporal frequencies of the moving dots inside the shape boundary and stationary dots outside the boundary. Therefore, static opponent motion–defined shapes without this cue were tested as an additional control. Approximately 44% (95/216) of V4 neurons showed shape selectivity. Analyses of these selective neurons both at single-neuron and population levels revealed that the shape-selective V4 neurons responded selectively to the moving kinetic shapes and that these neurons demonstrated robust invariance for shape preference across different shape conditions. Cue-invariant shape selectivity was more pronounced when kinetic shapes included the temporal frequency cue. This invariance may be rooted in nonlinearities occurring early in the visual pathway.

    loading  Loading Related Articles