The Role of Robo3 in the Development of Cortical Interneurons


    loading  Checking for direct PDF access through Ovid

Abstract

A number of studies in recent years have shown that members of the Roundabout (Robo) receptor family, Robo1 and Robo2, play significant roles in the formation of axonal tracks in the developing forebrain and in the migration and morphological differentiation of cortical interneurons. Here, we investigated the expression and function of Robo3 in the developing cortex. We found that this receptor is strongly expressed in the preplate layer and cortical hem of the early cortex where it colocalizes with markers of Cajal–Retzius cells and interneurons. Analysis of Robo3 mutant mice at early (embryonic day [E] 13.5) and late (E18.5) stages of corticogenesis revealed no significant change in the number of interneurons, but a change in their morphology at E13.5. However, preliminary analysis on a small number of mice that lacked all 3 Robo receptors indicated a marked reduction in the number of cortical interneurons, but only a limited effect on their morphology. These observations and the results of other recent studies suggest a complex interplay between the 3 Robo receptors in regulating the number, migration and morphological differentiation of cortical interneurons.

    loading  Loading Related Articles