GABAA Receptor Subunit Profiles of Tangentially Migrating Neurons Derived From the Medial Ganglionic Eminence


    loading  Checking for direct PDF access through Ovid

Abstract

During rodent corticogenesis, a sizeable subpopulation of γ-aminobutyric acid (GABA)ergic interneurons arises extracortically from the medial ganglionic eminence (MGE). These neurons progressively acquire responsiveness to GABA in the course of corticopetal tangential migration, a process regulated by ambient GABA and mediated by GABAA receptors. Here, we combined patch clamp electrophysiology and single-cell reverse transcription–polymerase chain reaction to examine GABAA receptor expression in green fluorescent MGE-derived (eGFP+) cells in telencephalic slices from gestational day 14.5 BAC-Lhx6 embryos. GABA concentration–response curves revealed lower apparent affinity and efficacy in eGFP+ cells in and around the MGE than their counterparts in the cortex. Pharmacological tests revealed subunit-selective response profiles in the MGE and cortex consistent with differential expression of GABAA receptor isoforms. Profiling of GABAA receptor subunit transcripts (α1–5, β1–3, and γ1–3, δ) uncovered increased expression of the α1-, α2-, α5-, γ2-, and γ3-subunit messenger RNAs in the cortex. We propose that the dynamic expression of certain GABAA receptor subunits contributes to assembling receptor isoforms that confer functional attributes important in regulating the migration and maturation of primordial GABAergic cortical interneurons.

    loading  Loading Related Articles