Gradient COUP-TFI Expression Is Required for Functional Organization of the Hippocampal Septo-Temporal Longitudinal Axis

    loading  Checking for direct PDF access through Ovid


The hippocampus (HP), a medial cortical structure, is subdivided into a distinct dorsal (septal) and ventral (temporal) portion, which is separated by an intermediate region lying on a longitudinal curvature. While the dorsal portion is more dedicated to spatial navigation and memory, the most ventral part processes emotional information. Genetic factors expressed in gradient during development seem to control the size and correct positioning of the HP along its longitudinal axis; however, their roles in regulating differential growth and in supporting its anatomical and functional dissociation remain unexplored. Here, we challenge the in vivo function of the nuclear receptor COUP-TFI (chicken ovalbumin upstream promoter transcription factor 1) in controlling the hippocampal, anatomical, and functional properties along its longitudinal axis. Loss of cortical COUP-TFI function results in a dysmorphic HP with altered shape, volume, and connectivity, particularly in its dorsal and intermediate regions. Notably, topographic inputs from the entorhinal cortex are strongly impaired in the dorsal portion of COUP-TFI mutants. These severe morphological changes are associated with selective spatial learning and memory impairment. These findings identify a novel transcriptional regulator required in the functional organization along the hippocampal septo-temporal axis supporting a genetic basis of the hippocampal volumetric growth with its final shape, circuit, and type of memory function.

    loading  Loading Related Articles