Temperature Influences Chorda Tympani Nerve Responses to Sweet, Salty, Sour, Umami, and Bitter Stimuli in Mice

    loading  Checking for direct PDF access through Ovid

Abstract

Temperature profoundly affects the perceived intensity of taste, yet we know little of the extent of temperature’s effect on taste in the peripheral nervous system. Accordingly, we investigated the influence of temperature from 23 °C to 43 °C in 4 °C intervals on the integrated responses of the chorda tympani (CT) nerve to a large series of chemical stimuli representing sweet, salty, sour, bitter, and umami tastes in C57BL/J6 mice. We also measured neural responses to NaCl, Na-gluconate, Na-acetate, Na-sulfate, and MSG with and without 5 µM benzamil, an epithelial sodium channel (ENaC) antagonist, to assess the influence of temperature on ENaC-dependent and ENaC-independent response components. Our results showed that for most stimuli (0.5M sucrose, glucose, fructose, and maltose; 0.02M saccharin and sucralose; 0.5M NaCl, Na-gluconate, Na-acetate, Na-sulfate, KCl, K-gluconate, K-acetate, and K-sulfate; 0.05M citric acid, acetic acid, and HCl; 0.1M MSG and 0.05M quinine hydrochloride: QHCl), CT response magnitudes were maximal between 35 °C and 39 °C and progressively smaller at cooler or warmer temperatures. In contrast, the weakest responses to NH4Cl, (NH4)2SO4, and K-sulfate were at the lowest temperature, with response magnitude increasing monotonically with increasing temperature, while the largest responses to acetic acid were at the lowest temperature, with response magnitude decreasing with increasing temperature. The response to sweet and umami stimuli across temperatures were similar reflecting the involvement of TRPM5 activity, in contrast to bitter stimuli, which were weakly affected by temperature. Temperature-modulated responses to salts and acids most likely operate through mechanisms independent of ENaC and TRPM5.

Related Topics

    loading  Loading Related Articles