Magnetic resonance diffusion tensor imaging with fluorescein sodium dyeing for surgery of gliomas in brain motor functional areas

    loading  Checking for direct PDF access through Ovid



Tumor surgery in brain motor functional areas remains challenging. Novel techniques are being developed to gain maximal and safe resection for brain tumor surgery. Herein, we assessed the magnetic resonance diffusion tensor imaging (MR-DTI) and fluorescein sodium dyeing (FLS) guiding technique for surgery of glioma located in brain motor functional areas.


Totally 83 patients were enrolled according to our inclusion and exclusion criteria (56 patients in experimental group, 27 patients in control group). In the experimental group, the surgical approach was designed by DTI imaging, which showed the relationship between the tumor and motor tract. The range of resection in the operation was determined using the FLS-stained area, which recognized the tumor and its infiltrated tissue. The traditional routine method was used in the control group. Postoperatively, all patients underwent enhanced brain MRI within 72 hours to ascertain the extent of resection. Patients were followed in our outpatient clinic over 6-24 months. Neurological deficits and Karnofsky scoring (KPS) were evaluated.


There were no significant differences in balance test indexes of preoperative data (sex, age, lesion location and volume, and neurological deficits before operation) and diagnosis of histopathology between the two groups. There was a trend in the experimental group for greater rates of gross total resection (80.4% vs. 40.7%), and the paralysis rate caused by surgery was lower in experimental (25.0%) vs. control (66.7%) groups (P <0.05). The 6-month KPS in the low-grade and high-grade gliomas was 91±11 and 73±26, respectively, in the experimental group vs. 82±9 and 43±27, respectively, in the control group (P <0.05 for both).


MR-DTI and FLS dye guiding for surgery of glioma located in brain motor functional areas can increase the gross total resection rate, decrease the paralysis rate caused by surgery, and improve patient quality of life compared with traditional glioma surgery.

Related Topics

    loading  Loading Related Articles