Metformin inhibits nuclear factor-κB activation and inflammatory cytokines expression induced by high glucose via adenosine monophosphate-activated protein kinase activation in rat glomerular mesangial cellsin vitro

    loading  Checking for direct PDF access through Ovid

Abstract

Background

The renoprotective mechanisms of adenosine monophosphate (AMP)-activated protein kinase (AMPK) agonist - metformin have not been stated clearly. We hypothesized that metformin may ameliorate inflammation via AMPK interaction with critical inflammatory cytokines. The aim of this study was to observe the effects of metformin on expression of nuclear factor-κB (NF-κB), monocyte chemoattractant protein-1 (MCP-1), intercellular adhesion molecule-1 (ICAM-1) and transforming growth factor-beta 1 (TGF-β1) induced by high glucose (HG) in cultured rat glomerular mesangial cells (MCs).

Methods

MCs were cultured in the medium with normal concentration glucose (group NG, 5.6 mmol/L), high concentration glucose (group HG, 25 mmol/L) and different concentrations of metformin (group M1, M2, M3). After 48-hour exposure, the supernatants and MCs were collected. The expression of NF-κB, MCP-1, ICAM-1, and TGF-β1 mRNA was analyzed by real time polymerase chain reaction. Western blotting was used to detect the expression of AMPK, phospho-Thr-172 AMPK (p-AMPK), NF-κB p65, MCP-1, ICAM-1, and TGF-β1 protein.

Results

After stimulated by HG, the expression of NF-κB, MCP-1, ICAM-1, TGF-β1 mRNA and protein of MCs in group HG increased significantly compared with group NG (P <0.05). Both genes and protein expression of NF-κB, MCP-1, ICAM-1, TGF-β1 of MCs induced by high glucose were markedly reduced after metformin treatment in a dose-dependent manner (P <0.05). The expression of p-AMPK increased with the rising of metformin concentration, presenting the opposite trend, while the level of total-AMPK protein was unchanged with exposure to HG or metformin.

Conlusion

Metformin can suppress the expression of NF-κB, MCP-1, ICAM-1 and TGF-β1 of glomerular MCs induced by high glucose via AMPK activation, which may partly contribute to its reno-protection.

Related Topics

    loading  Loading Related Articles